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Ii
SHOCK WAVE PROPAGATION IN AN INHOMOGENEOUS MEDIUM

USING FINITE DIFFERENCES

[ Section I

INTRODUCTION

Finite-difference fluid equations have been known to pro-

vide valid solutions to problems containing shocks when the physically

correct conservation variables in conservation form are used. In this

study, we examine the problem of shock propagation in an inhomogeneous

medium with exponentially varying density. The one-dimensional self-
similar analytic solution to this problem will be compared to various

numerical solutions using different algorithms. This problem consti-Ktutes a more severe numerical test for shock propagation than the shock
wave in an homogeneous medium and therefore serves as a better tpst of
numerical algorithms.

In particular we find that care must be taken in the use of forms

of the hydrodynamic equations which do not express physical conservation.
For non-conservation formulations of the energy equation an artificial
viscosity must be introduced, not only to provide the necessary stability,

but also to provide shock heating. The magnitude of th- s artificial vis-

cosity to obtain best shock results depends on the grid size and the

problem type. There is no simple way to obtain this optimal viscosity

for problems wher3 the solution is not known in advance.
5In addition, we find that Flux-Corrected Transport (FCT) has

several properties which make it more flexible and effective for

shock calculations. While the comparison between different energy

formulations has been made easier through the use of the FCT scheme,

the results hold for any finite difference algorithm and in particular

they will be shown to hold using the Lax-Wendroff scheme as well.

Note: Manuscripf. submitted August 22, 1975.
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The problem and its analytical solution are well described

by Zeldovich and Raizer. We outline here their self-similar solution

as well as the conditions under which it holds. The solution is given

both for the increasing and decreasing density cases. The medium is

defined by its characteristic length - or scale height - which is equal

to the e-folding distance. The analytic solution is given as a function
X-xof the similarity variable f which is equal to where X is the

shock location and x is the Eulerian coordinate location. The velocity

of the shock front is given by D =ac where a - a coefficient which

depends only on the specific heat ratio 1 - is determined by the solution

of a boundary-value problem. 6 For the increasing density problem

with 1 = 2 (a = 1.5), the self similar analytic solution behind the shock is:

Y+ _'o. I . -/2
= TT1 p(p) (1+2 (2

u 2 a 2 A p(X)(1 2 3 /2
y+ 1 t

U = 2 c

where p (X) is the ambient density immediately in front of the shock.
0

The unperturbed medium is characterized by

p = po(X)e

The initial conditions for our calculations were also taken after the

self-similar solution had developed. The only restriction on the

application of the analytic solution is that the initial pressure and

temperature be taken equal to 0. While this condition is difficult to

satisfy rigorously in a numerical calculation, the temperature and

2



the pressure of the ambient gas have been chosen to be very small so

that the pressure and temperature ratios across the shock are very

large (5x 10 4 typically for the pressure ratio). This corresponds to

the infinite ach number, strong shock limit required for the self-

similar solution.

Three different variables have been used for the energy

equation, while the continuity and momentum equations have been

treated in their usual conservative form. The numerical algorithms

used treat all con3ervative terms in conservative finite-difference

form. Use has been made of a Lax-Wendroff scheme (LW) and a

Flux-Corrected Transport (FCT) scheme. The Lax-Wendroff scheme

uses the two-step Richtmeyer form coupled with a Von Neumann vis-

cosity to provide the additional stability and viscous heating needed

near the shocks. The FCT scheme makes use of artificial viscosity

(Von Neumann type) when the energy equation is cast in terms of the

pressure or temperature variable, to provide the viscous heating

otherwise lacking in the shocks. Artificial viscosity is not needed

in the strict conservative formulation.

The first set of equations used solves for the mass, momen-

tum, and total energy per unit volume and is in strict conservative

form. The second set is based on mass, momentum, and pressure

whereas the last one uses mass, momentum, and temperature. The

total energy, pressure, and temperature equations are respectively:

-E+ v E = -v.(p+q)v (1)

--- +V'vp = -(^-1)(p+q)v.v (2)

- -[(Y-2)T+(7-1)R
] v ' v  (3)at' '
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qax x 0"1 (4)

w for a perfect gas.

The conservation form of the difference equations is a necessary

but not a sufficient condition to guarantee the correct weak (discontin-

uous) solution to the ideal hydrodynamic e-uations. It is possible to

get different weak solutions by using different equivalent forms of the

partial differential equations. The jump cnditions depend on the

form of the equation and we must use physical reasoning to determine

if these jump conditions make sense. In dealing with physical laws

we usually try to write the equations in a conservation form which

implies actual physical conservation. In hydrodynamics only the

total energy equation combined with the mass and momentum equation

provides a consistent set of equations for physically conserved quantities.

This problem of correctly calculating the weak soluions can be

avoided by introducing viscosity and seeking genuine (continuous)

solutions. With viscosity the hydrodynamic equations do not have truly

discontinuous solutions and all forms of the energy equation should be

equivalent. Artificial viscosities - and not real viscosity - have to be

added to provide the necessary heating because real viscosity acts

over a few mean free paths which are usually much smaller than the

grid size. The effect of a real physical viscosity will always be too

small unless the mean free path and cell size are comparable.

However, the difficulty with artificial viscosity is that the shock

4
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profile must be spread over several cells for stability regardless

of the actual physical thickness of the shock and thus inter-

actions of the shock with inbomogeneous media will not be accurate

unless the background varies slowly. Further, since there

is little physical basis for the artificial viscosity, we can only hope
that it will produce the correct heating in non-conservative formulat ions.

In this regard the FCT finite difference formulation seems to

have a distinct advantage in that its shock profile spreads over only

couple of cell widths almost independent of the coefficient used for

the artificial viscosity. The velocity gradient used in the Von Neumann

viscosity is nearly independent of the coefficient and thus any amount

of heating that is desired can be achieved by raising the viscosity

coefficient. In most other schemes the larger coefficient tends to

smooth out the shock profile which reduces the velocity gradient

and somewhat offsets the effect of increased coefficient.

It is the failure to compute accurately the dissipation mech-

anism which converts kinetic energy to thermal energy that leads to

a failure to conserve energy in the temperature and pressure formu-

lations and hence gives incorrect results for the shock dynamics.

Since the total energy equation is in divergence form whether

the viscosity terms are included or not, conservation of energy is

automatically guaranteed when a conservative difference scheme is

applied to it. In the remainder of the paper we will show the results

of several test calculations demonstrating these ideas. Section Two

shows the results for a shock propagating into an exponentially

increasing density medium. The results of the different formulations

are compared for several values of the artificial viscosity parameters

and grid sizes. In Section Three the results for the decreasing density

case are shown and in Section Four the conclusions that can be

drawn from this study are made.
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Section 2

RESULTS FOR THE INCREASING DENSITY CASE

For a 7= 2 gas the self-similar solution is completely analytic.

From the Rankine-Hugoniot relations, we expect the density jump

across the shock to be equal to 3. Figures 1 and 2 show density profiles

for the energy and temperature equations respectively for the LW

scheme after a time t = 350 8 t. At that time, the shock has moved over

a distance equal to 1. 3 A. Three different values of the viscosity

coefficient have been used and the effect of non-conservation is shown

clearly from these two figures. In the total energy formulation, the

value of b affects mainly the stability of the solution (and the amplitude

of the ripples behind the shock); in the temperature formulation, it

changes the speed of propagation of the shock significantly. For the

latter equation, the larger the viscosity coefficient, the more the

viscous heating and te better the agreement between the numerical

solution and the analytic solution. Note, however, that the peak

density behind the shock decreases with the artificial viscosity

coefficient b and thus the density profiles cannot be taken as the

only criteria of good numerical solutionv.

The integrated total and thermal energies are shown in

Figure 3 for some of these cases. This figure shows that energy

conservation is better achieved by using the total energy formulation.

Note that while for the correct energy conserving formulation the

integrated thermal energy is increasing with time, in the case of

the temperature formulation it is actually decreasing. As
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we have seen, this loss of thermal energy reduces the driving

force of the shock and results in the shock lagging the ccrrect

solution. When the tempe'ature equation is used, energy

conservation is improved by increasing the magnitude of the artificial

viscosity coefficibnt. A limiting case occurs when the b coefficient

in q is sufficiently large to make the artificial pressure greater than

the real pressure in the sLock front. In that case, too much heat is

generated in the shock and, for example by using b=4 in the FCT

temperature scheme the shock moves faster than its analytic

counterpart by 1%. The total integrated energy also increases above

its correct value for this case and the difference reaches 1.8% at the

end of the run. Note also that for these cases the stability requires

a smaller time step since both the temperature and the shock velocity

take larger values than in a real shock.

Another limiting case is shown in Figure 4 where q has been

set equal to 0 for both the temperature and 'ne pressure equation

formulation. The algorithm used in this case is FCT since LW would

be unstable. The shock lags behind its exact solution to a much larger

extent than shown previously and 36% of the total energy is lost using

this formulation.

It was investigated whether these results depend on the form

of the artificial viscosity coefficient. In Figure 5, use has been made

of the Tyler viscosity coefficient 7 with the LW scheme using the
temperature formulation. The density profiles look smoother than

for the Von Neumann viscosity but the energy conservation is not as

good and consequently the shock location is also worse. Once again,

smooth density profiles do not constitute a complete criterion for

good numerical solutions. The shock dynamics, which can be checked

only against an exact solution, must also be considered.
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Variations of the Results with Grid Size

Results shown previously have been obtained with a fixed

grid size corresponding to a spatial resoludon of 40 grid points per

scale height. In practice, the resolution is often much coarser so

the influence of the spatial resolution on the results is now investi-

gated. Figure 6 shows the results for the density profiles when the

grid size 8x is multiplied by 4 so the scale height is made up of 10

grid points; the density profile in the shock broadens and the peak

value of the density just behind the shock decreases. For this

kind of spatial resolution, all equations have difficulty in simulating

the presence of a strong shock and in fact look similar. The two-cell-
8

wide flat top on the density profile is characteristic of FCT . The energy
equation, although showing a reduced density ratio across the shock,

still approximates fairly well the shock location and yields energy

conservation. The two other energy equation formulations gain

energy by 10% to 16% with the pressure equation more nearly conserving

ene.-gy. These results contrast with the finer resolution cases for

which the same values of b lead to a loss of energy. Although the effect

of grid size is supposed to be scaled out of the problem by the form of

the artificial viscosity used, in effect when the non-conservative

formulations are used energy conservation and shock location are

altered by changes in grid resolution even when the same coefficient

of artificial viscosity is used. Clearly, for this resolution,

information about the shock has been mostiy lost for both temper-

ature and pressure equations and suggests that even tO grid points

per scale height with the energy equation represents a minimum

resolution in order to provide a meaningful solution.

Figure 7 shows density profiles for the temperature equation

when the spatial resolution has been increased to 80 cells per scale

height. The shock width decreases while the density jump ratio

8



increases for the same value of the parameter b in the artificial

viscosity coefficient.

From the results presented for the increasing density case,

it is appa.-ent that only the total energy equation formulation yields a

correct xesult in wh the shock location does not depend strongly

on the viscosity coefficent or on changes in the grid size. For the

other energy equation formulations, although it is possible to find an

optimum value for the viscosity coefficient in each specific case,

this value is not independent of changes in grid size or problem

parameters. The total energy equation is thus superior in all

respects to the non- conservative forms. Although this result is
4already known , attempts to use the non-conservative formulation

with (or even without) artificial viscosity for viscous heating in shocks

have been mad- repeatedly. Further, this work has allowed us to

quantify this notion for a specific case by estimating the error made

when a non-conservative form is used.



Section 3

RESULTS FOR DECREASING DENSITY CASE

In case of an exponentially decreasing density medium,

the "analytic" self-similar solution does not exist and has to be

replaced by the numerical solution of the following ordinary differential

equations:

= 1-.v1 -(v)4- -(2-a)/ay

~~-Y 7 (2/a)+ y -1 1

dBfl+ a71;- - ,

d = -7+1

where u, , and is the solution behind the shock. Since the solution

to these equations is weU1-behaved, monotoni and does not involve

computing the shock wave, good precision can be obtained and a

meaningful comparison can be performed with the results of the

partial differential equations used previously for the "numerical"

solution. The specific heat ratio 7' was chosen to be equal to 7/5

for this case (a = 5.45) and results are summarized briefly below.

Figures 8 and 9 show the density profiles for a very strong

shock propagating in a decreasing density medium for the FCT and

LW schemes respectively. At the tine it is shown (t = 200 6t} the

shock has traveled approximately a distance equal to 1.2 A. The grid

size is the same as that used in Figures 1-5. Note that this time the

shock is accelerating.
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Several interesting features may be noted from these graphs.

First, using an artificial viscosity coefficient b=2 results in the

shock propagating too fast for both the FCT aud LW schemes. This

is in contrast to the results of the increasing aensity case shown in

Figures 2, 5, and 7 where a coefficient b=2 resuitd tn too slow a

shock propagatior .kgain for the decreasing density case a coefficient

b--O. 5 results in the shock lagging behind the analytic ,iolution. The

b=1 coefficient for the LW method gives reasonable shock locaticn

but shows significant ripples behind the shock. For comparison Ohe

acluto: obtained wiih the conservation energy formulation is shown

in Figure 8 and again this shock location result is in agreement with

the analytic solution.

Integrated total and thermal energies can be computed as

previously. The differences are much smaller for this decreasing

density case (of the order of 3%)and this can easily be explained by

the fact that since the shock propagates in a region of decreasing

density, the energy carried by the shock represents a decreasingly

smaller fraction of the total initial energy. Thus, while the energy

is conserved to a much better accuracy than previously the error in

the shock dynamics is not reflected as much in the total energy con-

servation and energy conservation is a less useful check on accuracy.

Another test shows the results obtained with a pressure

equation. In general, the use of the pressure equation leads to the

same kind of results as those obtained from the temperature equation.

More specificaly, because it involves the conservation of thermal

eaergy, the results it yields lie between those given by the temperature

and the total energy equation. The artificial viscosity coefficient is

similar to that used previously and we see in this particular example

11



that the pressure equation, although predicting quite accurately theshock location using FCT, oscillates much more than the temperature

equation. Oscillations in Figs. 8 and 9 may have different origins.

They are clearly characteristic oscillations behind a shock for the

LW algorithm. As for the FCT scheme, the fluctuations also
8

seem to be characteristic , but they are somewhat weaker terraces

in which only the derivative oscillates.
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Section 4

CONCLUSIONS

In this study, it has been shown that the numerical results

obtained for shock speeds and instantaneous profile in an exponentially

varying density medium can differ largely due to the choice of energy

equation and spatial resolution. By comparison with an analytic

solution, it has been shown that only the conservative energy equation

is reliable. Even in this best case, a fairly fine spatial resolution is

needed in order to derive accurate results.

The inclusion of some artificial viscosity is necessary not

only for stability but to produce the necessary shock heating in the

case of the temperature and pressure formulations. By suitable

adjustment of the coefficient of artificial viscosity one can obtain a

wide range of shock profiles and shock heating and achieve

near conservation and therefore good solutions. However,

it was found that there is no unique way to choose this coefficient

and the precise value to achieve conservation depends both on the

grid size and the nature of the problem.

The FCT algorithm does not require artificial viscosity for

stability and maintains a steep profile rather independent of the value

of artificial viscosity. Thus, if the temperature or pressure equation

must be used, FCT gives more flexibility in achieving the correct

amount of heating in the shock front. In addition, in the case of the

total energy formulation, the FCT scheme requires no artificial

viscosity at all, removing an additional restriction on the time step

and allowing larger time steps to be used.

13



ACKNOWLEDGMENTS

We are indebted to Dr. S. Zalesak for lending us an updated

version of FCT. We would like to acknowledge many useful

discussions with Drs. D. Book and N. Winsor. Finally, we thank

{Dr. J. Boris for his critical remarks, helpful suggestions, and

his careful reading of the manuscript.
This work was supported by the Defense Nuclear Agency.

REFERENCES

1. P.D. Lax, Comm. Pure Appl. Math. 7, 159 (1964).

2. P. D. Lax, Comm. Pure Appl. Math. 70, 537 (1957).

3. P. D. Lax and B. Wendroff, Comm. Pure Appl. Math. 13,
217 (1960).

4. J. Gary, Math. of Comp. 18, 1 (1966).

5. J. P. Boris and D. L. Book, J. Comput. Phys. 11, 38 (1973).

6. Y. B. Zeldovich and Y. P. Raizer, Physics of Shock Waves
and High Tem;perature Phenomena, Academic Press, Vol II,
p. 852-863 (1 56).

7. L. D. Tyler and M. A. Ellis, "The Tshok code: Lax Version,?
SC-TM-70-153, Sandia Laboratories (1970).

8. D. L. Book, J. P. Boris and K. Hain, Generalization of the
Flux Corrected Transport Technique, NRL Memorandum
Report 3021 (1975).

14



TOTAL ENERGY EQUATION-LW ALGORITHM-

t = 3508t Y-2:52A = 40 8X
ANALYTIC
SOLUTION

28/b=0.4
~ 24L q=-pb8X2LIL.
24-

2 ,b=2
D 2 0

b=4

2-

8-

4rb:

4- - SHOCK

DIRECTION

2 3 4 5 6

X (ARBITRARY UNITS)
Fig. 1 - Shock density profiles for shock propagating in the increasing density
direction. Total energy equation formulation with Lax-Wendroff (LW) algorithm.
The shock was located at x 0 at t 0.
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TEMPERATURE EQUATION- LW ALGORITHM -

32- t = 350 8t =2 b=0.4
A =4Qx

28- -_b= 2 ANALY71C
q =pb x2 l bxU SOLUTION

I bX -X
024-
H/b=4

:D20

< ;6-

rr 1

8
4SHOCK

DIRECTION

2 3 4 5 6
A

X (ARBITRARY UNITS)
Fig. 2 - Shock density profiles corresponding to the case of

Fig. 1 for temperature equation formulation
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VARIOUS ENERGY EQUATIONS
-b=O- FCT ALGORITHM-

Y=2
t=3508t I !

3 2 -A40 x ITFCT (b 0)

_ I ANALYTIC
28 _b2u l C SOLUTION

H IbX x Pz 24- !l-,bO
D Vo EFCT
> 20- i i

<I

16- i

12- I !/

4- SHOCK
-i- ---- DIRECTION

24 4, 5 6

X (ARBITRARY UNITS)
Fig. 4 - Comparison of the different energy equation formulations (energy E,
temperature T, pressure P) without any artificial viscosity using Flux-Corrected
Transport (FCT)
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TEMPERATURE EQUATION- LW ALGORITHM-

t = 3508t Y=232
A= 408x

28 q =-pbax(u+c) : 0.5 ANALYTIC
SOWTION

24- /

z20-

16-

8-/

4- SHOCK
DIRECTION

II I I .. .-

2 3 4 5 6

X (ARBITRARY UN ITS)
Fig. 5 - Same as Fig. 2 using Tyler's form of artificial viscosity
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VARIOUS EfNAERGY EQUATIONS - COARSE GRID

t 350-0t -7=
A= IOBx ANALYTIC

8-q-bx SOLUTION/

ax a x

7-7
CnIRECEiON
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1 TEMPERATURE EQUATION - LW ALGORITHM -
b=

! 6t- 350 Bt 7=2
, A:808xANALYTICA= 808 2SOLUTION

bu 8x14- q -pb8x2]~

12- / 2

Z)IO__1

ry 6-/

SHOCK
2- DIRECTION

4 5 6 7 8 9 10 1i 12
"I

X (ARBITRARY UNITS)
Fig. 7 - Influence of grid size. Grid size is half that used in Figs.

1 through 5. Temperature equation formulation using LW.
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TEMPERATURE AND TOTAL ENERGY EQUATION
- FCT ALGORITHM-

16-
t =2008t Y 7/5

14- A= 408x

q = -pb&Ix I ll
W. 12-

SHOCK
8 DIRECTION

6 ANALYTIC b=0.5
6 - SOLUTION

< EFCT /

4-

2- b=
2 ~TFCT b= 2

- , I ,I, I -

-12 -10 -8 -6 -4 -2
r 4

X (ARBITRARY UNITS)
Fig. 8 - Shock density profiles for shock propagating in the decreasing density
region. Temperature and energy equation formulations using FCT. The shock
was located at x = 0 at t = 0.
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TEMPERATURE EQUATION - LW ALGORITHM -

t =2008t 7= 7/5
6= A40 8x

14 q=-pb8X2 jb--

12

SHOCK -
DIRECTION

Hb 0.5
a' 63 -ANALYTIC

< SOLUTION

2- b=I

b=2
-12 -10 -8 -6 -4 -2

X (ARBITRARY UNITS)
FMg. 9 - Same as Fig. 8 using LW algorithm
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PRESSURE EQUATION -FTSHM

16- t 200 8t y7/5
A= 408x
q =-pb a x IU aua x a ~x

14-

S10- SHOCK
cc DIRECTION

-

b=2

,L% ANALYTIC SOLUTION

-12 -8-6 - -2
X(ARBITRARY)

A UNITS

Fig. 10-Results for the pressure equation forniulation using FOT
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